128 research outputs found

    On the Impact of Network Topology on Wireless Sensor Networks Performances Illustration with Geographic Routing

    Get PDF
    International audienceWireless Sensor Networks (WSN) are composed of constrained devices and deployed in unattended and hostile environments. Most papers presenting solutions for WSN evaluate their work over random topologies to highlight some of their "good" performances. They rarely study these behaviors over more than one topology. Yet, the topology used can greatly impact the routing performances. This is what we demonstrate in this paper. We present a study of the impact of the network topology on algorithm performance in WSNs and illustrate it with the geographic routing. Geographic routing relies on node coordinates to route data packets from source to destination. We measure the impact of different network topologies from realistic ones to regular and very popular ones through extensive simulation and experimentation campaigns. We show that different topologies can lead to a difference of up to 25% on delivery ratio and average route length and more than 100% on energy costs

    Experiences that matter: Unraveling the link between extracurricular activities and emotional and social competencies

    Get PDF
    Emotional and social competencies have been shown to be extremely desirable in young people for their successful entry into the labor market. Their development has been studied primarily as a result of formal training in the educational and work domains, whereas relatively little is known about the role played by extracurricular activities in promoting these types of competencies. Non-working personal experiences are often used as proxies to assess the emotional and social competencies of candidates in recruitment and selection phases. However, this inference is not based on clear scientific evidence. Drawing on experiential learning theory, this study investigated empirically the relationship between a range of extracurricular activities (volunteering, cultural activities, experience abroad, sport) and the competency portfolio of graduates. Data were collected from a sample of 324 graduates through a structured survey and a multi-rater assessment of their emotional and social competencies. The results of the Partial Least Square-Path Modeling in general provide support for the positive association between experiential extracurricular activities and emotional and social competencies, although not all relationships are supported. The present study contributes to advance in the understanding of the determinants of emotional and social competencies by examining their relationship with a broad range of extracurricular activities. Moreover, it discusses implications for higher education and human resource management

    A Concise Review of 5G New Radio Capabilities for Directional Access at mmWave Frequencies

    Get PDF
    In this work, we briefly outline the core 5G air interface improvements introduced by the latest New Radio (NR) specifications, as well as elaborate on the unique features of initial access in 5G NR with a particular emphasis on millimeter-wave (mmWave) frequency range. The highly directional nature of 5G mmWave cellular systems poses a variety of fundamental differences and research problem formulations, and a holistic understanding of the key system design principles behind the 5G NR is essential. Here, we condense the relevant information collected from a wide diversity of 5G NR standardization documents (based on 3GPP Release 15) to distill the essentials of directional access in 5G mmWave cellular, which becomes the foundation for any corresponding system-level analysis.Comment: 14 pages, 6 figures, 4 tables, published in proceedings of International Conference on Next Generation Wired/Wireless Networking, NEW2AN 2018, St. Petersburg, Russi

    6G to Take the Digital Divide by Storm: Key Technologies and Trends to Bridge the Gap

    Get PDF
    The pandemic caused by COVID-19 has shed light on the urgency of bridging the digital divide to guarantee equity in the fruition of different services by all citizens. The inability to access the digital world may be due to a lack of network infrastructure, which we refer to as service-delivery divide, or to the physical conditions, handicaps, age, or digital illiteracy of the citizens, that is mentioned as service-fruition divide. In this paper, we discuss the way how future sixth-generation (6G) systems can remedy actual limitations in the realization of a truly digital world. Hence, we introduce the key technologies for bridging the digital gap and show how they can work in two use cases of particular importance, namely eHealth and education, where digital inequalities have been dramatically augmented by the pandemic. Finally, considerations about the socio-economical impacts of future 6G solutions are drawn

    model of multi source nanonetworks for the detection of brca1 dna alterations based on lspr phenomenon

    Get PDF
    In this paper, we present a multi-source nanonetwork model for biomedical diagnosis applications, based on the Localized Surface Plasmon Resonance by different shape gold nanoparticles (i.e., cylinder, cube, and rod). We present the process of multi-source emission, diffusion, and reception of nanoparticles, based on the ligand/receptor binding. Then, a multi-detection process of DNA alterations is accomplished when nanoparticles are captured at the receiver. The colloidal particles are selectively functionalized with specific splice junctions of gene sequences to reveal simultaneously different alteration that could be associated to an early disease condition. Particularly, full-wave simulations have been carried out for the multi-detection of alternative splice junctions of breast cancer susceptibility gene 1. The proposed application is verified through numerical results and expressed in terms of Extinction-Cross Section, in the case of synchronous and asynchronous nanoparticles detection. We show that the proposed approach is able to detect DNA alterations, based on a selective nanoparticle reception process

    Efficient Management of Multicast Traffic in Directional mmWave Networks

    Get PDF
    Multicasting is becoming more and more important in the Internet of Things (IoT) and wearable applications (e.g., high definition video streaming, virtual reality gaming, public safety, among others) that require high bandwidth efficiency and low energy consumption. In this regard, millimeter wave (mmWave) communications can play a crucial role to efficiently disseminate large volumes of data as well as to enhance the throughput gain in fifth-generation (5G) and beyond networks. There are, however, challenges to face in view of providing multicast services with high data rates under the conditions of short propagation range caused by high path loss at mmWave frequencies. Indeed, the strong directionality required at extremely high frequency bands excludes the possibility of serving all multicast users via a single transmission. Therefore, multicasting in directional systems consists of a sequence of beamformed transmissions to serve all multicast group members, subgroup by subgroup. This paper focuses on multicast data transmission optimization in terms of throughput and, hence, of the energy efficiency of resource-constrained devices such as wearables, running their resource-hungry applications. In particular, we provide a means to perform the beam switching and propose a radio resource management (RRM) policy that can determine the number and width of the beams required to deliver the multicast content to all interested users. Achieved simulation results show that the proposed RRM policy significantly improves network throughput with respect to benchmark approaches. It also achieves a high gain in energy efficiency over unicast and multicast with fixed predefined beams.acceptedVersionPeer reviewe

    Modeling Reconfigurable Intelligent Surfaces-aided Directional Communications for Multicast Services

    Get PDF
    According to the 6G vision, the evolution of wireless communication systems will soon lead to the possibility of supporting Tbps communications, as well as satisfying, individually or jointly, a plethora of other very stringent quality requirements related to latency, bitrate, and reliability. The achievement of these goals will naturally raise many research issues within radio communications. In this context, a promising 6G wireless communications enabler is the reconfigurable intelligent surface (RIS) hardware architecture, which has already been recognized as a game-changing way to turn any naturally passive wireless communication setting into an active one. This paper investigates RIS-aided multicast 6G communications by first modeling the system delay as a first-come-first-served (FCFS) M/D/1 queue and analyzing the behavior under different blockage conditions. Then the study of multi-beam operation scenarios, covering multicast and RIS-aided multicast communications, is conducted by leveraging an M/D/c queue model. Achieved results show that large-size RISs outperform even slightly obstructed direct BS-to-user paths. In contrast, RISs of smaller sizes require the design of sophisticated power control and sharing mechanisms to achieve better performance.acceptedVersionPeer reviewe

    Unsupervised Learning for D2D-Assisted Multicast Scheduling in mmWave Networks

    Get PDF
    The combination of multicast and directional mmWave communication paves the way for solving spectrum crunch problems, increasing spectrum efficiency, ensuring reliability, and reducing access point load. Furthermore, multi-hop relaying is considered as one of the key interest areas in future 5G+ systems to achieve enhanced system performance. Based on this approach, users located close to the base station may serve as relays towards cell-edge users in their proximity by using more robust device-to-device (D2D) links, which is essential, e.g., to reduce the power consumption for wearable devices. In this paper, we account for the limitations and capabilities of directional mmWave multicast systems by proposing a low-complexity heuristic solution that leverages an unsupervised machine learning algorithm for multicast group formation and by exploiting the D2D technology to deal with the blockage problem.acceptedVersionPeer reviewe

    Extra-gastrointestinal stromal tumor of the pancreas: case report and review of the literature

    Get PDF
    Primary extra-gastrointestinal stromal tumor (EGISTs) arising in the pancreas is extremely rare: only 20 cases have previously been reported in the English literature from 2000 to 2013. We reported a case of EGIST of the pancreas in a 69-year-old woman who presented with abdominal pain and with a solid, heterogeneously enhancing neoplasm in the uncinate process of the pancreas, revealed preoperatively by an abdominal computed tomography scan. A diagnosis of neuroendocrine tumor was suggested. Positron emission tomography with 68Ga-DOTATOC did not show pathological accumulation of the tracer in the pancreas. The patient underwent enucleation, under ultrasonic guidance, of the pancreatic tumor that emerged to the surface of the pancreas. Histopathology and immunohistochemical examination confirmed the final diagnosis of EGIST of the pancreas (CD117+), with one mitosis per 50 high-power fields. Although rarely, GIST can involve the pancreas as a primary site, and this tumor should be considered in the differential diagnosis of pancreatic neoplasms

    Efficient Management of Multicast Traffic in Directional mmWave Networks

    Get PDF
    Multicasting is becoming more and more important in the Internet of Things (IoT) and wearable applications (e.g., high definition video streaming, virtual reality gaming, public safety, among others) that require high bandwidth efficiency and low energy consumption. In this regard, millimeter wave (mmWave) communications can play a crucial role to efficiently disseminate large volumes of data as well as to enhance the throughput gain in fifth-generation (5G) and beyond networks. There are, however, challenges to face in view of providing multicast services with high data rates under the conditions of short propagation range caused by high path loss at mmWave frequencies. Indeed, the strong directionality required at extremely high frequency bands excludes the possibility of serving all multicast users via a single transmission. Therefore, multicasting in directional systems consists of a sequence of beamformed transmissions to serve all multicast group members, subgroup by subgroup. This paper focuses on multicast data transmission optimization in terms of throughput and, hence, of the energy efficiency of resource-constrained devices such as wearables, running their resource-hungry applications. In particular, we provide a means to perform the beam switching and propose a radio resource management (RRM) policy that can determine the number and width of the beams required to deliver the multicast content to all interested users. Achieved simulation results show that the proposed RRM policy significantly improves network throughput with respect to benchmark approaches. It also achieves a high gain in energy efficiency over unicast and multicast with fixed predefined beams.acceptedVersionPeer reviewe
    • …
    corecore